In mathematics, Schreier's lemma is a theorem in group theory used in the Schreier–Sims algorithm and also for finding a presentation of a subgroup.
Suppose
is a subgroup of
, which is finitely generated with generating set
, that is,
.
Let
be a right transversal of
in
. In other words,
is (the image of) a section of the quotient map
, where
denotes the set of right cosets of
in
.
The definition is made given that
,
is the chosen representative in the transversal
of the coset
, that is,
![{\displaystyle g\in H{\overline {g}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/48b233cc7d4f89a5e3fd7f4f665757a5bf1ff7ec)
Then
is generated by the set
![{\displaystyle \{rs({\overline {rs}})^{-1}|r\in R,s\in S\}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/693590f7fd59e4964be3f274280c1e116f240f3a)
Hence, in particular, Schreier's lemma implies that every subgroup of finite index of a finitely generated group is again finitely generated.
The group Z3 = Z/3Z is cyclic. Via Cayley's theorem, Z3 is a subgroup of the symmetric group S3. Now,
![{\displaystyle \mathbb {Z} _{3}=\{e,(1\ 2\ 3),(1\ 3\ 2)\}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/34a88a9e779256a94e755eb4aeb208e78f550dac)
![{\displaystyle S_{3}=\{e,(1\ 2),(1\ 3),(2\ 3),(1\ 2\ 3),(1\ 3\ 2)\}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/843395bc72e27457fa5cfc2d4fb7d6a266c600cd)
where
is the identity permutation. Note S3 =
{ s1=(1 2), s2 = (1 2 3) }
.
Z3 has just two cosets, Z3 and S3 \ Z3, so we select the transversal { t1 = e, t2=(1 2) }, and we have
![{\displaystyle {\begin{matrix}t_{1}s_{1}=(1\ 2),&\quad {\text{so}}\quad &{\overline {t_{1}s_{1}}}=(1\ 2)\\t_{1}s_{2}=(1\ 2\ 3),&\quad {\text{so}}\quad &{\overline {t_{1}s_{2}}}=e\\t_{2}s_{1}=e,&\quad {\text{so}}\quad &{\overline {t_{2}s_{1}}}=e\\t_{2}s_{2}=(2\ 3),&\quad {\text{so}}\quad &{\overline {t_{2}s_{2}}}=(1\ 2).\\\end{matrix}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3796efbbea86cda02d2ecdd79702e08b9341e700)
Finally,
![{\displaystyle t_{1}s_{1}{\overline {t_{1}s_{1}}}^{-1}=e}](https://wikimedia.org/api/rest_v1/media/math/render/svg/76d6a1212869064f42588d7674dc3c0600cfed27)
![{\displaystyle t_{1}s_{2}{\overline {t_{1}s_{2}}}^{-1}=(1\ 2\ 3)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/49a9af941d111c765643530634f06a48afc3b2ad)
![{\displaystyle t_{2}s_{1}{\overline {t_{2}s_{1}}}^{-1}=e}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3a4a9172087d6b93a5bd26c2d75917518c584ffa)
![{\displaystyle t_{2}s_{2}{\overline {t_{2}s_{2}}}^{-1}=(1\ 2\ 3).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8073f8ec40287fe0000f89be909201d336e4d6df)
Thus, by Schreier's subgroup lemma, { e, (1 2 3) } generates Z3, but having the identity in the generating set is redundant, so it can be removed to obtain another generating set for Z3, { (1 2 3) } (as expected).
- Seress, A. Permutation Group Algorithms. Cambridge University Press, 2002.